Uncertainties Calculation¶
Notation | Meaning | Unit |
---|---|---|
\delta x | absolute uncertainty, x\pm\delta x | Unit of x |
$\frac{\delta x}{ | x | }$ |
+ / -¶
q=x+y-z
\delta q=\sqrt{\delta x^2+\delta y^2+\delta z^2}
\times / \div¶
q=x\times y\div z
\frac{\delta q}{|q|}=\sqrt{(\frac{\delta x}{x})^2+(\frac{\delta y}{y})^2+(\frac{\delta z}{z})^2}
\times / \div by a Constant¶
a is a constant:
q=ax
\delta q=a\delta x
^¶
n is known exactly:
q=x^n
\frac{\delta q}{|q|}=|n|\frac{\delta x}{|x|}
\sin / \cos¶
q=\sin\theta
\delta q=\cos\theta\times\delta\theta
q=\cos\theta
\delta q=\sin\theta\times\delta\theta
Exponentials¶
q=e^x
\delta q=e^x\times\delta x
\ln¶
Base-10 logarithms must first be converted to base-e via q=\log_{10}x=0.43\ln x
q=\ln x
\delta q=\frac{\delta x}{|x|}
Avg¶
\bar{x}: The average of multiple xs
\sigma: Standard deviation
// todo
Last update:
November 6, 2021
Created: September 14, 2021
Created: September 14, 2021