Skip to content

1D Kinematics

Constant Acceleration

v_f=v_i+at

x_f=x_i+v_it+\frac{1}{2}at^2

v_f^2-v_i^2=2a(x_f-x_i)

x_f=x_i+v_{avg}t

Centripetal Acceleration

a_c=\frac{v^2}{r}=r\omega^2, a_c points to the centre of the circle

Period: T=\frac{2\pi r}{v}

Angular velocity: \omega=\frac{2\pi}{T}=\frac{v}{r} (\omega in rad/s)

Torque

Equation Explain
\tau = rF\sin\theta r: distance between the point where force is applied and the rotating center
F: raw amount of force
\theta: angle between F and r
\alpha=\frac{\tau}{I} \alpha: angular acceleration
I: moment of inertia / rotational inertia
\alpha=\frac{a}{r}
I=mr^2 moment of inertia of a point mass
I=\frac{1}{3}mr^2 moment of inertia of a rod about its end
I=\frac{1}{2}mr^2 moment of inertia of a circle

Moment of Inertia

image-20211027015737670

image-20211027015752881

Parallel axis

image-20211212030057428

Centre of Mass

image-20211024023545838

Work

Equation Explain
W=\tau \Delta\theta
P=\tau \omega
K=\frac12 I\omega^2 K: rotational kinetic energy

Potential Energy

Equation Explain
U_s=\frac12kx^2 Elastic Potential Energy
U_g=mgh Gravitational Potential Energy

Collisions

Equation Explain
p=mv p: linear momentum (\frac{kg\times m}{s})
I = \Delta p=F\Delta t (for constant force) \Delta p / I: impulse
I\approx\int_{t_i}^{t_f}F_{\text{contact}} contact inpulse approximation (ignore all other forces)
E_k=\frac{p^2}{2m}
\Sigma F = \frac{dp}{dt} Net external force = rate of change of momentum
m_1v_1+m_2v_2=(m_1+m_2)v_f perfectly inelastic collision (conservation of momentum)
v_{1i}-v_{2i}=v_{2f}-v_{1f} perfectly elastic collision
m_1v_{1i}+m_2v_{2i}=m_1v_{1f}+m_2v_{2f} perfectly elastic collision (conservation of momentum)
m_1v_{1i}^2+m_2v_{2i}^2=m_1v_{1f}^2+m_2v_{2f}^2 perfectly elastic collision (conservation of kinetic energy)
v_{1f}=v_{1i}\times\frac{m_1-m_2}{m_1+m_2}
v_{2f}=2v_{1i}\times\frac{m_1}{m_1+m_2}
perfectly elastic collision when v_{2i}=0
Equation Explain
Mv_{CM}=\sum m_iv_i=p_{total} Total mass x speed of CM = sum of momentum of all particles = momentum of the object
\sum(\text{external forces})=M_{total}a_{CM}

Rolling Motion

Equation Explain
\omega = \frac{v}{R} \omega: rotating speed
\alpha=\frac{a_{CM}}{R} \alpha: angular acceleration
E = \frac12mv^2+\frac12I(\frac{v}{R})^2 kinetic energy for rolling motion

Angular Momentum

Equaiton Explain
L=I\omega L: Angular momentum (\frac{kg\times m^2}{s})
image-20211202203755914
$ L
I_f\omega_f=I_i\omega_i conservation of angular momentum

Last update: December 12, 2021
Created: September 14, 2021